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Abstract

Navigation apps like Google Maps guide millions of daily driving decisions by recommend-
ing the fastest route, but these suggestions can create congestion if too many users follow
them simultaneously. This study investigates whether users anticipate such effects by
strategically deviating from the recommended route, in line with Level-K reasoning mod-
els. Using a lab-based randomized controlled trial with Columbia students, we estimate
the distribution of Level-0, Level-1, and Level-2 reasoning in route choice and examine
whether visibly adaptive algorithms promote higher-order strategic thinking. We also
analyze what other stated contextual factors increase strategic responses. Findings can
be used to improve the design of routing platforms to account for both human-human
and human-algorithm strategic interactions, with the goal of reducing app-induced traffic
congestion.

1



Table of Contents

Introduction 3

Literature Review 4

Theoretical Framework 5

Level-K Thinking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Nash Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Experimental Design 7

Navigation App Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Research Questions and Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Key Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Analysis Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Conclusion, Implications, and Future Directions 13

Practical Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

References 15

2



Introduction

Navigation app users have noticed that suggestions labeled as “faster” can fail to deliver
actual time savings. This disconnect raises a broader question: how do users interpret
routing recommendations, especially when others may follow the same guidance?

“Even when typical faster routes are offered (e.g., 4 minutes faster), when I
choose to take those routes my ETA doesn’t change, indicating the route wasn’t
actually correct.”

— Google Maps user complaint [1]

Figure 1: Google Maps dynamic re-routing interface [2]
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Literature Review

Strategic User Behavior on Navigation Apps

Navigation apps such as Google Maps and Waze are now used by a majority of drivers,
with surveys reporting that roughly 72% of users follow app-suggested routes almost all the
time [3]. This widespread reliance can create herding effects, where many drivers converge
on the same path, causing unexpected congestion in neighborhoods and side streets [4].
Community pushback has included attempts to block apps or introduce fake traffic reports
to deter rerouting. These cases underscore that app influence extends beyond individual
convenience to broader urban traffic dynamics.
Guin (2021) highlights that while smartphone applications often improve individual travel
efficiency, they can unintentionally increase congestion by guiding multiple drivers onto the
same routes [3]. This coordination failure poses a major challenge in shared routing envi-
ronments.
Additionally, Mayr (2023) shows that the way apps frame routing information can meaning-
fully influence user decisions, indicating that some drivers anticipate others’ behavior and
adjust accordingly [5]. This aligns with behavioral game-theoretic models such as Level-K
reasoning, where users vary in how deeply they consider others’ likely actions.
Jiang (2014) applies evolutionary game theory to similar routing problems and shows that
drivers adapt based on congestion patterns over time [6]. Furthermore, Vosough (2024) finds
that some users are willing to accept longer personal travel times for social benefit when
presented with clear incentives or messaging about shared outcomes [7]. These findings
suggest that user behavior is heterogeneous, and that strategic deviation from app guidance
is both possible and context-dependent.
Evidence of such behavior also appears in observational and experimental work. Razo and
Gao (2013) find that some drivers plan routes by anticipating future congestion from others’
choices [8]. Similarly, Ben-Elia and Shiftan (2010) show that repeated exposure to traffic
outcomes encourages users to adapt their behavior over time [9]. These studies highlight
that app users do not always follow guidance blindly, and that strategic learning can emerge
in practice. Kroller (2021) further supports this view by documenting how users form ex-
pectations about the effects of app-based congestion and adjust their behavior accordingly
[10].
In summary, prior work confirms that routing apps shape behavior at scale, but user re-
sponses are heterogeneous and sensitive to framing and prior experience. Some users follow
the app without question, while others act strategically based on beliefs about traffic and
the decisions of fellow drivers. Level-K reasoning provides a structured way to interpret
these differences, with limited empirical evidence for the distribution of Level-0, Level-1,
and Level-2 users in route selection behavior.
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How do Routing Algorithms Work?

Routing algorithms used in platforms like Google Maps and Waze rely on real-time and
historical traffic data to recommend the route with the lowest expected travel time. These
systems continuously update suggestions using location data from millions of devices, com-
bining predictive analytics with live feedback on congestion levels [11].
At its foundation, Google Maps models the road network as a mathematical graph, where
intersections are nodes and roads are edges connecting them. To calculate the optimal path
through this network, it relies on two powerful algorithms: Dijkstra’s Algorithm and the
A* Algorithm. Dijkstra’s algorithm systematically explores the lowest-cost paths to find the
shortest route from a starting point to all other nodes, while A* improves efficiency by using a
heuristic to prioritize paths likely to reach the destination faster. These algorithms, combined
with real-time traffic data, power features like Google Maps’ “faster route available,” which
dynamically reroutes users as conditions change during their journey [12].
As navigation technology continues to evolve, we can expect Google Maps to further refine
its routing algorithms and threshold criteria, potentially incorporating more sophisticated
user behavior models like Level-K distributions to enhance the accuracy and usefulness of
its “faster route available” suggestions.

Theoretical Framework

Level-K Thinking

Level-K theory says that in strategic interactions, people reason in hierarchical steps or
”levels,” with each level anticipating and responding to the predicted strategies of lower-
level thinkers. A Level-0 player chooses actions in a simple, non-strategic way, often by
following defaults or salient cues. A Level-1 player best responds to the behavior of a Level-
0 player. A Level-2 player best responds to a Level-1 player, and so on. Each level represents
one additional step of reasoning about others’ actions.
In the context of navigation apps:

• Level-0 users follow the app’s recommended “fastest” route without considering how
others might behave.

• Level-1 users expect that many others will follow the same recommendation, leading
to congestion, and choose an alternative route.

• Level-2 users anticipate that Level-1 users will avoid the recommended route, so they
return to it, expecting it to be relatively clear.

Traditional Level-K models are typically applied to games with only human players. They
do not account for adaptive systems that respond to behavior in real time. Navigation apps,
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however, continuously update their recommendations based on user movements and traffic
conditions. This creates a feedback loop between user decisions and algorithmic updates.
To capture this dynamic, we model the navigation algorithm as a strategic actor. The
algorithm is assumed to be fully rational and capable of predicting the aggregate behavior
of users based on the distribution of Level-K types. Although it does not observe any user’s
type directly, it adjusts its guidance to optimize expected outcomes given how users are
likely to respond.
By explicitly incorporating the algorithm as a player in the strategic environment, this paper
extends the Level-K framework to include human-algorithm interaction. This approach
enables us to study how real-time route recommendations and user reasoning co-evolve. It
also highlights new forms of strategic complexity that emerge when decisions are shaped by
both other users and an adaptive system.
We hypothesize that visibly changing travel times in the dynamic condition act as a behav-
ioral cue that prompts participants to question the stability of the recommendation, thereby
nudging them to reason more deeply about others’ choices and potential congestion. This
mechanism is expected to elevate participants from Level-0 to Level-1 or Level-2 reasoning.

Nash Equilibrium

We define the Nash equilibrium of the route choice game as the outcome in which no user
can reduce their travel time by unilaterally switching routes. Suppose there are two available
routes, R1 and R2, each with a fixed base travel time and a capacity constraint. A total of N
users each choose one route. Travel time on each route increases with congestion, modeled
as a penalty that grows linearly with the load-to-capacity ratio.
Let the travel time on route Ri be defined as:

Ti(ni) = ti + α · ni

Ci

where:

• ti is the base travel time on route Ri,

• ni is the number of users on route Ri,

• Ci is the capacity of route Ri,

• α is a congestion sensitivity parameter.

A Nash equilibrium occurs when no individual driver can improve their travel time by switch-
ing routes, assuming all other drivers’ choices remain fixed. If both routes are used in
equilibrium, then travel times must be equal:

T1(n∗
1) = T2(n∗

2) and n∗
1 + n∗

2 = N
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This equilibrium model provides a theoretical benchmark against which we evaluate partici-
pant behavior in our experiment. If users are fully rational and possess complete information,
we would expect their choices to converge to the equilibrium distribution. In our experimen-
tal setup with fixed values for t1, t2, C1, and C2, the equilibrium predicts a specific allocation
(n∗

1, n∗
2) across the two routes.

To quantify deviations from rational coordination, we define a “Distance from Equilibrium”
metric:

D = |nobserved
1 − n∗

1| + |nobserved
2 − n∗

2|

This metric captures how far observed behavior deviates from the Nash equilibrium bench-
mark, which represents fully rational coordination. We compute this distance for each round
and compare averages across experimental groups to test whether adaptive routing algo-
rithms foster faster convergence to efficient distributions.
These deviations serve as a quantitative foundation for our analysis (Table 4), where we
examine how closely each group’s behavior aligns with equilibrium predictions. Systematic
gaps offer evidence of bounded strategic reasoning consistent with Level-K thinking. For
example, persistent overuse of a single route despite congestion may reflect limited depth of
reasoning or failure to anticipate others’ behavior.

Experimental Design

We will implement a lab-based randomized controlled trial (RCT) to learn if participants
exposed to adaptive routing algorithms demonstrate higher average reasoning levels (Level-
1 or Level-2) compared to those interacting with static algorithms. Participants will be
randomly assigned to one of two groups that vary the responsiveness of the routing algorithm
interface.

Experiment Group Description

Group 1: Static Algorithm (Baseline) Route recommendations do not
change in response to simulated
user behavior. Used to estimate
the baseline distribution of Level-K
reasoning under stable conditions.

Group 2: Dynamic Algorithm (Treatment) Route time projections adapt in real
time to simulate user choices, allowing
us to test whether visible algorithm
responsiveness increases strategic de-
viations.

Table 1: Experimental Design: Static vs. Dynamic Routing Algorithm
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This design enables a direct comparison of how adaptive algorithms influence users’ strategic
reasoning in route choice. This design also enables us to easily analyze the distribution of
inferred K-levels and participants’ written explanations to uncover additional influences on
behavior. These qualitative responses provide insight into factors such as risk aversion,
distrust of the app, prior experience, and awareness of others’ choices, all of which may
affect the depth of strategic thinking.
To ensure sufficient statistical power, we target a sample size that allows us to detect a
minimum detectable effect (MDE) of approximately 10 percentage points in the share of
Level-1 or Level-2 participants between groups, assuming baseline strategic reasoning of
15%. Power calculations indicate that a total sample of at least 160 participants (80 per
group) is required to detect this difference with 80% power at a conservative significance
level of p < 0.01. This sample size enables us to confidently evaluate Hypothesis 2.
Despite efforts to simulate real-world navigation conditions, we acknowledge that a lab ex-
periment inherently lacks the contextual stakes of actual driving, such as real-time pressure,
multitasking, or safety concerns. While controlled environments improve internal validity,
they may underestimate or misrepresent how users balance strategic reasoning with cognitive
load. Future work should examine whether similar reasoning patterns emerge in naturalistic
driving contexts or through mobile A/B testing in deployed apps.

Navigation App Interface

Experiment participants will interact with a simulated navigation app interface modeled on
real-world platforms like Google Maps. The interface displays two route options, each with
estimated travel times and a visual map indicating congestion levels.
In each round, participants face a choice between two routes: one with a base travel time
of X minutes and the other with X + Y minutes (e.g. 20 and 25 minutes, respectively).
To model congestion effects, travel time increases by 2 minutes for every additional five
participants selecting the same route. Each participant completes 10 sequential route choices,
with randomized initial positions to reduce learning effects and order bias. In the dynamic
algorithm condition, travel time estimates are refreshed every 5 seconds to simulate real-time
re-routing based on traffic flow.
The experiment will be implemented as a web-based application using the oTree framework.
Participant interactions, including route choices, timestamps, and written justifications, are
recorded in a PostgreSQL database.
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Figure 2: Group 1 (Static Algorithm)
Map Interface

Figure 3: Group 2 (Dynamic Algorithm)
Map Interface

Map interfaces are based on actual road networks but feature anonymized landmarks to
eliminate geographic bias. Travel time estimates are computed using empirical congestion
functions adapted from transportation planning models, grounding the experiment in plau-
sible behavioral dynamics.

Research Questions and Hypotheses

This study investigates how users of navigation apps reason strategically when choosing
routes, particularly in response to algorithmic design. We address the following research
questions:

1. RQ1: What is the distribution of Level-K reasoning (K = 0, 1, 2) among navigation
app users when making route choices?

2. RQ2: Does exposure to visibly adaptive routing algorithms increase the prevalence of
higher-level strategic reasoning compared to static algorithms?
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3. RQ3: What factors do users most commonly cite when explaining their decisions to
deviate from app-recommended routes?

These questions motivate three empirically testable hypotheses:

1. Hypothesis 1 (H1, related to RQ1): The majority of participants will exhibit
Level-0 reasoning, with smaller proportions displaying Level-1 and Level-2 reasoning.
This distribution reflects patterns found in prior Level-K studies in non-algorithmic
domains.

2. Hypothesis 2 (H2, related to RQ2): Participants exposed to adaptive routing
algorithms will demonstrate higher average reasoning levels (Level-1 or Level-2) than
those interacting with static algorithms.

3. Hypothesis 3 (H3, related to RQ3): The most frequently cited justification for
deviating from the recommended route will be the anticipation of congestion caused
by other users.

Each hypothesis is designed to be explicitly falsifiable. H1 would be rejected if higher-level
reasoning dominates participant behavior. H2 requires that users meaningfully respond
to algorithmic adaptation. H3 depends on consistent qualitative themes emerging from
coded responses. All hypothesized directions, outcome measures, and effect sizes will be
pre-registered to enhance transparency and guard against post-hoc theorizing. We use a
conservative threshold of p < 0.01 to assess statistical significance and reduce the likelihood
of false positives.

Key Metrics

We use four key metrics to evaluate our hypotheses:

• Route Choice (“fastest” or “alternate”): The primary behavioral outcome is
whether a participant follows or deviates from the app’s recommended route. This
binary decision reflects compliance versus strategic deviation and provides a first-stage
test of H1 and H2. These choices also serve as inputs for inferring Level-K reasoning
levels.

• Self-Reported Reasoning (Text): Participants’ open-ended justifications will be
analyzed to validate inferred reasoning levels and uncover motivations. This qualitative
data supports both H1 and H2, and is central to testing H3—specifically, whether
deviations stem from concerns about others’ choices or congestion effects.

• Inferred K-Level of Route Choice (K = 0, 1, 2): Each decision will be classified
as Level-0, Level-1, or Level-2 based on observed route choice and textual explana-
tion. This metric enables direct estimation of the reasoning distribution and supports
comparisons across conditions to test H1 and H2.
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• Distance from Equilibrium (D): This quantitative measure captures how far each
group’s observed route shares deviate from Nash equilibrium predictions. By compar-
ing D across rounds and groups, we assess whether adaptive routing promotes more
efficient coordination. This metric supports tests of H2 and offers indirect evidence
for bounded strategic reasoning consistent with Level-K theory.

To calculate Inferred K-Level of Route Choice, we will use a logistic regression model
that predicts the probability of being classified as Level-0, Level-1, or Level-2 based on
each route choice and accompanying explanation. Each participant is assigned the K-level
with the highest predicted probability. These individual-level classifications are then aggre-
gated to estimate the overall distribution of strategic reasoning and to compare treatment
conditions. While rule-based classification would be a simpler approach, it lacks flexibil-
ity in handling ambiguous or mixed-strategy responses and does not scale effectively for
group-level inference. To train the model, we will manually label a subset of data based on
participants’ written justifications and route choices. Labels are assigned using a predefined
coding scheme aligned with Level-K definitions and reviewed for consistency. While the
model outputs probability distributions over K-levels, we assign the classification with the
highest probability. We will conduct basic validation checks, including inter-rater agreement
and cross-validation, to ensure model reliability.
Together, these metrics provide the evidence needed to evaluate all three hypotheses. By
combining coded behavioral outcomes with textual analysis, we ensure a comprehensive
understanding of how and why participants deviate from default recommendations.

Control Variables and Confounding Factors

To improve internal validity and isolate the causal impact of algorithm design on user be-
havior, we will control for some key individual-level factors that may influence route choice:

• Navigation app experience: How often the participant uses navigation apps in
everyday driving.

• Navigation platforms used: The specific apps participants typically rely on (e.g.,
Google Maps, Apple Maps, Waze).

• Driving experience: The total number of years participants have been driving.

• Route familiarity and preference: Whether participants are familiar with the test
route or have a preferred route based on factors other than travel time (e.g., scenic
value, habit).

To account for these factors, we use a pre-experiment questionnaire followed by stratified
randomization to balance these characteristics across treatment groups. This approach helps
reduce bias from individual differences and ensures that observed effects are attributable to
the experimental manipulations rather than prior habits or preferences.
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Incentive Structure

Each participant receives a base participation payment. To align user behavior with re-
alistic decision-making, we offer performance-based monetary incentives. Simulated travel
times are stochastic and congestion-sensitive: when many users select the same route, its
travel time increases probabilistically. Participants earn higher bonuses by minimizing travel
time over the session, rewarding both foresight and adaptability. This structure encourages
participants to internalize coordination problems and engage in strategic reasoning when
beneficial.

Analysis Plan

Our proposed analysis strategy integrates both quantitative and qualitative data to evaluate
the three pre-registered hypotheses.
To test H1, we report the distribution of inferred K-levels across the full sample. A pre-
dominance of Level-0 classifications would support the hypothesis, while a higher share of
Level-1 or Level-2 behavior would falsify it.
To test H2, we compare K-level distributions between treatment groups using a chi-squared
test of independence. This test evaluates whether the distribution of reasoning types is
statistically independent of algorithm adaptiveness.

Observed (%) Relative Change (%)

Group Level-0 Level-1 Level-2 Level-0 Level-1 Level-2

Group 1 (Static) 83.6 12.9 3.5 – – –
Group 2 (Dynamic) 78.2 13.3 8.5 −6.5 +3.1 +142.9

p-value from chi-squared test of independence: 0.007

Table 2: Example Distribution of Inferred K-Level Reasoning by Group

H3 is evaluated using the Self-Reported Reasoning (Text) metric. If the most common justi-
fication for deviation references anticipated congestion caused by other users, the hypothesis
is supported. Open-ended responses will be thematically coded using a predefined rubric
derived from Level-K reasoning types.
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K-Level Typical Explanation Interpretation / Reasoning Logic

Level-0 “I followed the app because it said it
was fastest.”

Non-strategic. Accepts the app’s rec-
ommendation at face value without
considering others’ behavior. Assumes
the app is optimal by default.

Level-1 “I thought the recommended route
would be crowded since everyone would
take it.”

Strategic response to anticipated con-
gestion. Assumes others are Level-0
and avoids the obvious route as a best
response.

Level-2 “Others will try to avoid the recom-
mended route, so it might actually be
clear.”

Second-order reasoning. Assumes oth-
ers are Level-1 and best responds by
returning to the recommended route.

Table 3: Anticipated Participant Explanations by Inferred K-Level

Finally, we will compare observed route choices to theoretical predictions from the Nash
equilibrium model introduced earlier. This benchmark reflects fully rational coordination.
Deviations from equilibrium provide additional evidence of bounded strategic reasoning con-
sistent with Level-K theory.

Group Observed Share
on Route 1 (%)

Nash Predicted
Share (%)

Deviation (%)

Group 1 (Static) 62.5 50.0 +12.5
Group 2 (Dynamic) 52.0 50.0 +2.0

Table 4: Example Comparison of Observed Route Choices vs. Nash Equilibrium Predictions

Conclusion, Implications, and Future Work

This research investigates whether users of navigation apps exhibit Level-K reasoning in
route choices, and whether dynamic algorithm designs encourage deeper strategic thinking.
By estimating the distribution of Level-0, Level-1, and Level-2 users in a controlled lab
setting, we contribute new empirical evidence to the Level-K literature while extending it to
human-algorithm interaction. Modeling the navigation platform as a rational player reveals
how system design can shape user behavior, particularly in environments with real-time
feedback.
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Practical Implications

The proposed study has direct implications for the design of navigation platforms and trans-
portation policy. If adaptive interfaces increase higher-order reasoning, developers could im-
plement crowd-aware messages or selectively deploy real-time updates to nudge users toward
socially efficient routing. Personalized framing based on inferred reasoning levels may also
reduce congestion externalities by discouraging herd behavior. From a policy perspective,
understanding the cognitive mechanisms behind route selection can inform infrastructure
decisions aligned with broader goals such as congestion pricing, traffic equity, and environ-
mental sustainability.

Future Work

Future research should extend these lab-based insights to field settings. An online random-
ized experiment on a navigation app could test whether strategic framing, such as “Many
drivers are accepting this route”, influences deviation behavior and reasoning levels at scale.
In-app metrics would allow for passive tracking of route choices, compliance rates, and con-
gestion outcomes.
Longitudinal studies could examine whether reasoning levels evolve with repeated exposure
to adaptive guidance, and whether users learn to anticipate algorithmic behavior over time.
Additional work might explore heterogeneity in treatment effects by user type. For example,
whether urban drivers respond differently than rural users to strategic cues.
Ultimately, this research aims to inform the improved design of routing platforms to account
for both human-human and human-algorithm strategic interactions, with the goal of reducing
app-induced traffic congestion.
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